
Academic Editor: Antonio Miotello

Received: 10 March 2025

Revised: 29 March 2025

Accepted: 1 April 2025

Published: 3 April 2025

Citation: Jiménez-Desmond, D.;

Pozo-Antonio, J.S. Fourier Transform

Infrared (FTIR) Database of Historical

Pigments: A Comparison Between

ATR-FTIR and DRIFT Modalities. Appl.

Sci. 2025, 15, 3941. https://doi.org/

10.3390/app15073941

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Fourier Transform Infrared (FTIR) Database of Historical
Pigments: A Comparison Between ATR-FTIR and
DRIFT Modalities
Daniel Jiménez-Desmond * and José Santiago Pozo-Antonio

CINTECX, GESSMin Group, Department of Natural Resources and Environmental Engineering, School of Mining
and Energy Engineering, University of Vigo, 36310 Vigo, Spain; ipozo@uvigo.gal
* Correspondence: danieljose.jimenez@uvigo.gal

Abstract: The existence of historical pigments databases is important to speed up cultural
heritage research. Knowledge of their chemical composition and their manufacture con-
tributes to the study of art history and helps develop accurate conservation-restoration
strategies. In this study, a total of nineteen pigments, among which we find silicates (Egyp-
tian blue, natural and synthetic blue ultramarine, green earth and chrysocolla), oxides
(natural and synthetic hematite, red and yellow natural ochres, and chromium green),
carbonates (natural and synthetic azurite, natural and synthetic malachite, and white lead),
sulphides (natural and synthetic cinnabar, and orpiment) and acetates, (verdigris) have
been characterized by Fourier Transform Infrared-Spectroscopy in Attenuated Total Re-
flection (ATR-FTIR) and Diffuse Reflectance (DRIFT) modalities. Considering the latter,
there is still a great deal of uncertainty in the interpretation of the different IR vibrational
bands. Therefore, a comparative study between these two techniques has been carried
out to highlight the potential of DRIFT spectroscopy as a portable and non-destructive
technique that allows the differentiation and characterization of historical pigments in
the field of cultural heritage. Before performing FTIR analysis, pigments were analysed
using X-ray diffraction (XRD) to detect impurities and/or additives in the pigments. Differ-
entiation between natural and synthetic pigments was possible due to the identification
of impurities in natural pigments, and manufacture-related compounds or additives in
synthetic pigments. Results obtained in this study have proven DRIFT to be a very useful
analytical technique for in situ characterization of heritage materials. This study serves as
an initial step in clarifying the challenges and uncertainties associated with interpreting
spectra obtained through the DRIFT modality. However, the use of other complementary
analytical techniques is required.

Keywords: molecular composition; silicate; oxide; carbonate; sulphide; acetate

1. Introduction
Identifying pigments in art is one of the most important goals in the study of cultural

heritage for numerous reasons, ranging from historical research and archaeometry to
adequate conservation strategies [1]. From a historical and artistic point of view, the use of
specific pigments is linked to specific time periods, thus helping to date artworks, providing
useful information for experts, e.g., to confirm or refute the authenticity of paintings [2].
Moreover, by studying the pigments and techniques an artist used, historians can gain
insights into the artistic process and the context in which the artwork was produced. On
the other hand, from a conservation and restoration standpoint, pigment identification is
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essential for developing effective preservation strategies. The identification of pigments
enables conservators to understand how to preserve painted artworks, acknowledging their
reactions to environmental factors such as light, moisture, temperature fluctuations, etc.,
thereby mitigating deterioration and ensuring the long-term stability of the artwork [2]. In
short, the scientific study of pigments not only enhances our comprehension of art history
and artistic practices but also plays a crucial role in the safeguarding of cultural heritage
for future generations.

There are several analytical techniques that can be used for this purpose (e.g., X-ray
diffraction, X-ray fluorescence, Fourier transform infrared spectroscopy, optical and scan-
ning electronic microscopy modalities, chromatographical techniques, etc.) [3]. However,
most of them are sample-invasive, and therefore not universally appreciated [3]. Nowadays,
non-destructive instruments are broadly used for the in situ characterization of materials
which are often more acceptable and convenient since they respect the integrity of the
artwork [3,4]. The quality and performance of the equipment available have drastically
improved, leading to the possibility of obtaining more information from the objects without
the need for sampling [4].

Among the different analytical approaches, Fourier transform infrared spectroscopy
(FTIR) can be used to characterize both organic (e.g., binders) and inorganic materials
(e.g., pigments). FTIR spectroscopy utilises infrared radiation to measure the fraction of
incident light absorbed at specific wavelengths. This process generates a spectrum that
represents the vibrational modes of molecular bonds, enabling the structural analysis of
various materials. Each spectrum serves as a chemical fingerprint for identifying minerals
and provides unique insights into their molecular structure. In addition, FTIR devices
have improved in the last two decades in terms of spectral resolution and detection limit,
granting their consolidation as an effective and versatile technique for the study of cultural
heritage materials [5–8]. FTIR can be used in transmission, Attenuated Total Reflection
(ATR-FTIR) and in reflectance modality, obtaining an IR spectrum that yields valuable
information [7,8]. This is because the energy of most molecular vibrations is found within
the IR region, particularly the mid-infrared (MIR, from 4000 to 450 cm−1) [6]. The kind of
sample available will generally determine the modality applied as follows [8]:

i. When the IR light can pass through the sample, transmission, which usually provides
high spectral resolution, is the most suitable modality. However, it is considered
destructive as a pelleting procedure is usually required; the sample must be grinded
and mixed with another solid, typically potassium bromide (KBr). Samples can also
be examined in a diamond anvil cell by previously compressing the sample (ergo,
also destructive).

ii. When the IR light cannot pass completely through the sample, ATR-FTIR is the most
suitable since the light only interacts with the first few microns (µm) of the sample.
However, in order to apply ATR (with benchtop or portable equipment), it is necessary
to exert pressure with the equipment plunger against the FTIR crystal (made up of
diamond, germanium or zinc selenide), and is therefore destructive.

iii. Lastly, reflectance modality can also be used and is recommended when samples
cannot be taken from the artwork and in situ measurements are needed. Here, mea-
surements can be performed in three different manners as follows: (1) reflection-
absorption where the IR light passes through a very thin sample and reflects on a
reflective substrate, which is useful for analysing thin tissues or coatings; (2) specu-
lar reflection, where the IR light is bounced off a reflective surface, which is useful
for examining samples like polymers, gemstones, metals, thin films, glass, etc.; and
(3) diffuse reflection, where the light is scattered off a sample surface (Diffuse Re-
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flectance Infrared Fourier Transform spectroscopy, DRIFT), which is commonly ap-
plied to characterise rough and matte surfaces such as stones and paintings.

Regarding results, ATR-FTIR spectra are like those acquired in transmission modality,
as stated by Silva et al. [9]. However, Navas et al. [10] compared the transmission and DRIFT
spectra of several blue pigments and observed significant differences. It was concluded
from their findings that DRIFT modality was more effective in the identification of pigments
whether they were pure or mixed with rabbit glue. Moreover, Arrizabalaga et al. [11] also
observed great differences when comparing the spectra of different materials (nitrates,
sulphates, carbonates, oxides and oxalates) obtained with a FTIR benchtop equipment
(in transmission and ATR modalities) and with a handheld device in DRIFT modality.
Overall, handheld DRIFT devices can yield interesting results, though this technique has
been scarcely used in cultural heritage and is vaguely reported in scientific literature
(e.g., [9,10,12–15]) as opposed to the other FTIR modalities (transmission and ATR).

Beyond the evident advantages of portability and non-invasiveness in handheld
DRIFT devices, this IR spectroscopy technique is particularly beneficial due to its ability
to simultaneously identify both organic and inorganic materials [16]. However, DRIFT
modality may encounter challenges related to spectral interferences which can arise from
low material quantities, surface roughness and distortions in the spectra [16]. In particular,
spectral distortion can occur because the diffusion and specular reflection components can-
not be optically separated, leading to signal distortion [17]. This occurs since the refractive
index (n) and absorption index (k) of materials influence the specular reflectance [11]. Thus,
when a sample contains a compound with k > 1, Reststrahlen bands appear (German word
meaning ‘residual rays’ [6,8]), and this can happen with many inorganic materials (carbon-
ates, sulphates, silicates, etc.) [18,19]. These bands basically refer to specific wavelengths
of light that are strongly reflected rather than transmitted or absorbed by the material,
making it difficult to interpret the spectra [6]. This is more pronounced when several com-
pounds are present in a sample, as is the case of pigments where impurities or additives are
usually present.

In this study, an ATR-FTIR and DRIFT comparative study has been carried out for
the analysis of nineteen pigments. This comparison aimed to enhance the identification
of characteristic functional groups, addressing the ongoing challenges and uncertainties
in interpreting spectra obtained through DRIFT modality. Regarding the selection of pig-
ments, there are various ways of classifying pigments in the literature [2,20–24]: origin
of manufacture (natural or synthetic), composition (organic and inorganic), colour (blue,
red, green, etc.), among others. This study examines the primary chemical composition
of various pigments, encompassing silicates (Egyptian blue, natural and synthetic blue
ultramarine, green earth and chrysocolla), oxides (natural and synthetic hematite, natural
red and yellow ochres, and synthetic chromium green), carbonates (natural and synthetic
azurite, natural and synthetic malachite, and white lead), sulphides (natural and synthetic
cinnabar, and orpiment) and acetates (verdigris). These pigments were selected due to
their historical significance as they are among the most frequently documented in pictorial
heritage, regardless of the support (e.g., wall or easel painting) or the painting technique
employed (e.g., fresco or mixed with egg yolk, rabbit glue, linseed oil or Arabic gum). Fur-
thermore, by classifying pigments according to their chemical composition, this study high-
lights their shared spectroscopic characteristics. For instance, all silicate-based pigments
exhibit similar Si–O vibrational bands. This classification facilitates the differentiation of
pigments with overlapping infrared (IR) spectral features, providing valuable information
for professionals. A prior mineralogical characterization by X-ray diffraction (XRD) was
carried out to fully characterise the pigments, identifying the possible presence of other min-
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eral phases associated to impurities additives, etc., which could provide other IR features in
the spectrum.

2. Materials and Methods
The nineteen pigments studied were supplied by Kremer Pigments GmbH & Co. KG

(Aichstetten, Germany): silicates (Egyptian blue, natural and synthetic blue ultramarine,
green earth and chrysocolla), oxides (natural and synthetic hematite, red and yellow
natural ochres, and chromium green), carbonates (natural and synthetic azurite, natural
and synthetic malachite, and white lead), sulphides (natural and synthetic cinnabar, and
orpiment) and acetates (verdigris). The data provided by the supplier for each pigment are
included in Table 1.

Table 1. Pigments used in the study. Data provided by the supplier and compared to the authors
characterization by X-ray diffraction (XRD).

Chemical
Nature Suppliers Code Authors

Code * Supplier’s Composition Authors’ Mineralogical Composition by XRD

Silicates

#100601
Egyptian blue EGB-S Cuprorivaite Cuprorivaite, CaCuSi4O10

Quartz, SiO2

#10510
Lapis lazuli UL-N Sodium calcium aluminium

silicate

Lazurite, Na3Ca(Al3Si3O12)S
Sodalite, Na8Al6Si6O24Cl2

Calcite, CaCO3
Diopside, CaMgSi2O6

Pyrite, FeS2
Albite, (Na,Ca)(Si,Al)4O8

Muscovite, KAl2Si3AlO10(OH)2
Wollastonite, CaSiO3

#45010
Blue

ultramarine
UL-S Sodium aluminium

sulphosilicate + kaolinite

Lazurite, Na3Ca(Al3Si3O12)S
Sodalite, Na8Al6Si6O24Cl2)
Nepheline, Na,K(Al4Si4O16)

Kaolinite, Al2Si2O5(OH)4

#11010
Green Verona

earth
GE-N Celadonite

Glauconite, (K,Na)(Fe3+,Al,Mg)2(Si,Al)4O10(OH)2
Celadonite, K(Mg,Fe)Fe3+Si4O10(OH)2

Muscovite, KAl2(AlSi3O10)(OH)2
Calcite, CaCO3

Clinochlore, (Mg,Fe2+)5Al(Si3Al)O10(OH)8
Albite, NaAlSi3O8
Montmorillonite,

(Na,Ca)0,3(Al,Mg)2Si4O10(OH)2·nH2O
Kaolinite, Al2Si2O5(OH)4

#10350
Chrysocolla CHR-N Natural copper silicate

Chrysocolla, CuSiO3
Malachite, CuCO3Cu(OH)2

Quartz, SiO2

Oxides

#48651
Hematite HE-N

Natural iron oxide + SiO2 +
Al2O3 + CaO + MgO + K2O +
TiO2 + P2O5 + MnO + Na2O

Hematite, Fe2O3
Kaolinite, Al2Si2O5(OH)4

Muscovite, KAl2(AlSi3O10)(OH)2
Dolomite, CaMg(CO3)2

#48289
Iron oxide red HE-S Synthetic iron (III) oxide Hematite, Fe2O3

#11273
Red natural ochre RO-N Iron (III) oxide

Hematite, Fe2O3
Quartz, SiO2

Gypsum, CaSO4·2H2O
Diopside, CaMgSi2O6

Illite, (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)]

#40301
Yellow iron oxide

ochre
YO-N Goethite + Al2O3 + SiO4 + calcite Goethite, FeO(OH)

Calcite, CaCO3

#44200
Chromium oxide

green
CG-S Chrome (III) oxide Eskolaite, Cr2O3
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Table 1. Cont.

Chemical
Nature Suppliers Code Authors

Code * Supplier’s Composition Authors’ Mineralogical Composition by XRD

Carbonates

#10200
Natural Azurite AZ-N Copper hydroxide carbonate

Azurite, CuCO3Cu(OH)2
Quartz, SiO2

Kaolinite, Al2Si2O5(OH)4
Phlogopite, KMg3AlSi3O10(F,OH)2

#10180
Synthetic azurite AZ-S Basic copper carbonate Azurite, CuCO3Cu(OH)2

Calcite, CaCO3

#10300
Natural

malachite
MA-N Copper hydroxide carbonate

Malachite, CuCO3Cu(OH)2
Cuprite, Cu2O

Hematite, Fe2O3

#44400
Synthetic
malachite

MA-S Copper hydroxide carbonate Malachite, CuCO3Cu(OH)2
Quartz, SiO2

#46000
White lead WL-S Lead carbonate, cerussite Cerussite, PbCO3

Sulphides

#10624
Cinnabar CI-N Cinnabar Cinnabar, HgS

#42000
Vermilion VE-S Mercuric sulphide Cinnabar, HgS

#10700
Orpiment OR-N Yellow arsenic sulphide Orpiment, As2S3

Realgar, AsS

Acetate #44450
Verdigris VER-S Copper (II)-acetate-1-hydrate Hoganite, Cu(CH3COO)2·H2O

* S, synthetic; N, natural.

The mineralogical composition of the powdered pigments was determined using
X-ray diffraction (XRD) with an XPert PRO PANalytical B.V. (Almelo, The Netherlands),
according to the random-powder method. Analyses were performed with Cu-Kα radiation,
Ni filter, 45 kV voltage and 40 mA intensity. The exploration range was 3◦ to 60◦ 2θ and
the goniometer speed was 0.05◦ 2θ s−1. The oriented aggregate method was also used in
green earth and natural ochre pigments since it is common for these pigments to have clay
minerals in their composition. The mineral phases were identified using X’Pert HighScore
software (version 4.9.0.27512). Table 1 compares the specifications provided by the supplier
with those obtained from the mineralogical characterization conducted by the authors. The
detection limit of this technique was ca. 3 wt.%; therefore, other mineral phases in low
percentage could not be discarded.

The molecular composition of the pigments was obtained by Fourier Transform In-
frared Spectroscopy (FTIR) by directly analysing the powder pigments. The pigments
were analysed using a laboratory FTIR benchtop Thermo Nicolet 6700 equipment (Thermo
Fisher, Waltham MA, USA) with a 2 cm−1 resolution in Attenuated Total Reflection (ATR)
modality, with 100 scans (automatically averaged into a single spectrum), operating in the
mid-infrared spectral region (4000–650 cm−1). The powdered pigments were individually
analysed by placing less than 1 gram and pressing the plunger against a diamond crystal,
exerting the maximum pressure that the equipment allows to ensure the best possible
contact with the diamond crystal. A 4300 Handheld FTIR Spectrometer manufactured by
Agilent Technologies S.L. (Santa-Clara, CA, USA) was also used in Diffuse Reflectance
Infrared Fourier Transform spectroscopy (DRIFT) modality, operating in the same infrared
spectral region, with 32 scans (automatically averaged into a single spectrum), with a
spectral resolution of 4 cm−1 and a penetration depth of 2–3 µm. A Coarse Gold Reference
Cap (G8180-67560) was used for background subtraction. In this procedure, approximately
2–3 grams of each powdered pigment were individually placed on glass slides and then
flattened by gently pressing another glass slide on top, creating a smooth and uniform
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surface. Once compacted, the top glass slide was carefully removed, and the equipment
was positioned to ensure full contact with the flattened surface. This setup was adequate to
cover the 6 mm spot diameter effectively. A total of three measurements were obtained by
direct contact, exerting as much pressure as possible without breaking the glass slide. The
spectra with the highest absorbance peaks (ergo, more representative) and higher spectral
resolution were selected. Regardless of the modality used, pigments were analysed under
controlled laboratory conditions (50 ± 10% relative humidity and 20 ± 2 ◦C temperature).

3. Results
In this section, the ATR-FTIR and DRIFT results are included for each pigment,

grouped according to their chemical nature, i.e., silicates, oxides, carbonates, sulphides
and acetates. For each subsection, tables are included, comparing the characteristic bands
identified for each modality, the vibration modes and the mineralogical assignment made
for each band. Due to the lack of knowledge in the use of DRIFT modality, some of the
assignments were made by the authors by considering the position of the bands identified
in ATR-FTIR modality, which were already reported by other authors. Figures comparing
the spectra in both modalities are also included for each pigment.

Considering the FTIR spectra obtained, it must be considered that the bands in the
region between 2400 and 1900 cm−1 in the ATR-FTIR spectra were assigned to the sig-
nal from the diamond crystal from the benchtop equipment used [25]. As for the DRIFT
spectra, they generally showed high intensity bands due to atmospheric CO2, around
2400–2300 cm−1 (marked in the figures with “CO2”), as well as broad bands between
4000 and 3100 cm−1, assigned to –OH [25,26]. Moreover, many of the DRIFT spectra
showed bands between 3100 and 2800 cm−1, 2650 and 2500 cm−1 and 1780 and 1270 cm−1

related to organic compounds [25,26]. Their presence could be related to the extraction
process of the pigment from the mineral ore, as it was the case of natural blue ultramarine
(UL-N), explained below. In other cases, the organic components could be due to a levi-
gation process, i.e., mineral particle separation. This method was developed by Michael
Price (MP) for pigment commercialization in 1997 as a technique for separating powder
pigment into various pigment sizes, thus obtaining different shades [27]. The MP method
involved washing the pigment with different mediums: e.g., egg yolk for azurite and
malachite, rabbit glue for cinnabar or casein for realgar [27]. This could justify the pres-
ence of characteristic bands generally assigned to organic compounds, such as methylene
groups or amino acids, which were present in many of the pigment spectra (marked in the
figures with “OM”, i.e., organic matter). However, these “OM” bands were not included in
Tables 2–6 since their assignment to one organic component or another was not essential
for pigment allocation nor within the aims of this study. In addition, in order to identify
the compound nature, the application of other analytical techniques such as chromato-
graphic techniques, such as gas chromatography (GC) and High Performance Liquid
Chromatography (HPLC), would be necessary.

3.1. Silicate Pigments

Silicate pigments are mainly characterized by bands assigned to Si–O bonds found
in the range 1250–650 cm−1 in both modalities (Table 2). The mineralogical characteriza-
tion of Egyptian blue (EGB-S) by XRD, composed of cuprorivaite and quartz in relation
to the manufacturing process of the pigment [28], was visible in the IR spectra regard-
less of the modality. In addition, calcite was also identified through both FTIR modalities
in EGB-S: CO3

2− group characteristic bands were identified in the ATR-FTIR spectra at
1490 cm−1, and at 1735 and 1353 cm−1 in the DRIFT spectra. Therefore, while XRD results
did not report the presence of calcite, probably because it was below the detection limit (ca.
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3 wt.%) of the XRD equipment, FTIR did. Calcite is part of the raw materials used during
the manufacturing process of Egyptian blue [28], therefore, its presence is not surprising.
High intensity bands assigned to cuprorivaite were present in both spectra (Figure 1a,b),
though at higher wavenumbers in DRIFT (Figure 1b). The bands assigned to quartz impurities
showed higher intensities in DRIFT modality, additionally showing a Reststrahlen band around
684 cm−1 [29] (marked with a black arrow in Figure 1b). One aspect to be highlighted is the
presence of a stairstep characteristic pattern in the DRIFT spectra assigned to cuprorivaite
(marked with a black rectangle in Figure 1b) as was stated by Wiseman et al. [29].

Table 2. Silicate-based pigments analysed by ATR-FTIR and DRIFT modalities. Bands (cm−1) and
assignment (vibration mode and mineral associated) are included where possible. See Table 1 for the
explanation of the pigment identification codes.

ATR-FTIR DRIFT
Pigment

Wavenumber (cm−1) Assignment 1 Wavenumber (cm−1) Assignment 1

EGB-S

2042, 1930, 1820 ν+δ(Si–O), cuprorivaite [14]
1735 νs+δ(CO3

2−), calcite [26]
1647 –OH [26]

1490 CO3
2−, calcite [26] 1353 νas(CO3

2−), calcite [26]
1227, 1158, 1049, 997 νas(Si–O), cuprorivaite [30,31] 1264, 1175, 1057, 662 νs(Si–O), cuprorivaite [32,33]

802 νs(Si–O), quartz [8,34] 775, 711, 684
(Reststrahlen) Si–O, quartz [29,35]

756, 665 νs(Si–O), cuprorivaite [30,31]
3600–3000 –OH [26], muscovite (?) 3800–3000 –OH [26], muscovite (?)

2911, 2859, 2639 ν(–CH), organic matter [26] 2607, 2172, 2093, 1850,
1731 ν(–CH), organic matter [26]

1647 –OH [26] 1688 –OH [26]
1430 CO3

2− [26], calcite (?) 1435 CO3
2− [26], calcite (?)

1255 ν(C–O–C), calcite [26]

1157, 1054 SiO3
2−, silicate [26] 1234, 1030 (Reststrahlen) νas(Si–O or Si,Al–O), lazurite

[15,36,37]
965 Si,Al–O, sodalite [38,39] 970 νas(Si–O), sodalite [10]
750 Al–O–Si, muscovite [40] 752, 728 Al–O–Si, muscovite (?)
700 νas(Si,Al–O), lazurite [9,41]

UL-N

664 –SO4
2−, lazurite [41] 667 –SO4

2−, lazurite [15]

UL-S

3690, 3621 δ(–OH), kaolinite [42] 3805–3700 –OH, kaolinite [35]
1920 CO3

2−, carbonate [26]
1648 –OH [26] 1684 –OH [26]

1240, 1160 SiO3
2−, silicate [26] 1280, 1240 νas(Si–O) or νas(Si,Al–O),

lazurite [36,37]
990 Si,Al–O, sodalite [38,39] 1006, 940, 800 Al–OH, kaolinite [35]

800, 752, 692 Al,Si–O, kaolinite [43] 753, 735, 705 Si–O, silicate [26]
665 –SO4

2−, lazurite [41] 675 –SO4
2−, lazurite [15]

3500–3100 ν(–OH), aluminosilicates [44] 3800–2900 –OH, aluminosilicates [26]
1840 νs+δ(CO3

2−), calcite [14]
1632 –OH [26] 1695 –OH [26]

1175–1150 Si–O [26], silicates
1425, 873 νas(CO3

2−), calcite [8,45] 1493, 1430 CO3
2−, calcite [11,35]

1065(Reststrahlen) ν(Si–O), glauconite [15]

970, 724 Si–O, glauconite/celadonite
[43,46,47] 960, 920 Si,Al–O, kaolinite [26]

777, 735 Si–O [26], silicates

GE-N

671 δ(Si–O), glauconite [48]
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Table 2. Cont.

ATR-FTIR DRIFT
Pigment

Wavenumber (cm−1) Assignment 1 Wavenumber (cm−1) Assignment 1

CHR-N

3600, 3321 –OH [26,49], malachite (?) 3800–3000 ν(–OH), malachite [50,51]
3392 δ(–OH), malachite [18]
1630 δ(–OH), chrysocolla [18] 1689 –OH [26]

1492, 1388, 1095, 823 CO3
2−, malachite [18] 1483 CO3

2−, malachite (?)
998 Si–O, chrysocolla [49] 1214, 1152 SiO3

2−, silicate [26]

752 Si–O [26], chrysocolla (?)
β(CO3

2−), malachite [52] 1056 (Reststrahlen) ν(Si–O), chrysocolla (?)

670 Si–O, quartz [8,34] 790–690, 660 Si–O, quartz [26]
1 Vibration mode: νs, symmetric stretching; νas, asymmetric stretching; δ, bending; (?), possible assignment.
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The blue colour in blue ultramarine pigments is due to sodalite group minerals, mainly
lazurite and sodalite [53], as detected by XRD and is present in both variants (natural and
synthetic). Additionally, natural blue ultramarine (UL-N) was also composed of calcite,
diopside, pyrite, albite, muscovite and wollastonite, all mineral phases related to the min-
eral ore [53]. As for synthetic blue ultramarine (UL-S), nepheline (another sodalite-group
mineral) and kaolinite were detected, the latter related to its manufacturing process [53].
Their characteristic IR characteristic bands of lazurite/sodalite were present in both spec-
tra (Table 2), regardless of the modality (ATR-FTIR or DRIFT) and the pigment’s nature
(natural-N or synthetic-S). These bands were positioned at similar wavenumbers (±5 cm−1)
in both ATR-FTIR and DRIFT. This similarity was also reported by Navas et al. [10] in a
study comparing DRIFT and transmission modalities. Still, whilst the ATR-FTIR spectra
of UL-N (Figure 2a) and UL-S (Figure 2c) were similar, DRIFT spectra showed differences
between them (Figure 2b,d, respectively). UL-N showed a Reststrahlen band in the DRIFT
spectrum at 1030 cm−1 assigned to lazurite (marked with a black arrow in Figure 2b),
not present in the UL-S DRIFT spectrum [15,36,37]. Additionally, bands in the region
2200–1600 cm−1 in the UL-N spectrum (marked with a black dashed-line rectangle in
Figure 2b) suggested the presence of organic matter (OM) [26]. Indeed, as reported by the
supplier, the method of obtaining this pigment is by grinding the mineral (lapis lazuli) and
mixing it with melted wax, resins and oils; a complex process reported by medieval authors
such as Cennino Cennini [54]. Lastly, DRIFT spectra of both UL-N and UL-S showed bands
between 1350 and 1200 cm−1 (marked with a black rectangle in Figure 2b,d) related to Si–O
or Si, Al–O overlapping [36,37], not present in the ATR-FTIR spectrum.

In green earth pigments, the green colour is due to mica-group phases, mainly glau-
conite/celadonite [55], as detected by XRD. These were observed in both modalities
(Table 2). Other mica-group minerals were identified by XRD, such as muscovite, to-
gether with calcite, clinochlore, albite and anorthite. Moreover, XRD of oriented-aggregates
allowed the identification of clay minerals such as montmorillonite and kaolinite. All
these impurities are common among commercial green-earth pigments [47,56]. In the FTIR
spectra, the main difference was observed through the presence of a Reststrahlen band at
1065 cm−1 (marked with a black arrow in Figure 3b) in the DRIFT spectrum, assigned to
glauconite [15]. In addition, DRIFT modality showed a higher number of bands when
compared to the ATR-FTIR spectra, all ascribable to the silicate pigment impurities (Table 2).

Lastly, CHR-N was not only composed by chrysocolla by XRD; malachite and quartz
were also detected, mineral phases associated to chrysocolla [49]. These phases were
also identified by FTIR analysis, as observed in Table 2. ATR-FTIR (Figure 4a) showed
silicate characteristic bands assigned to chrysocolla and quartz, as well as carbonate
group bands ascribable to malachite. These were also present in the DRIFT spectrum
(Figure 4b), in addition to a Reststrahlen band at 1056 cm−1 (marked with a black arrow
in Figure 4b).

Overall, when comparing ATR-FTIR and DRIFT modalities, the silicate characteristic
bands were present at higher wavenumbers in the later. In addition, Reststrahlen bands
were observed by DRIFT between 1065 and 1030 cm−1 in UL-N, GE-N and CHR-N, and
at 684 cm−1 for EG-S, all assigned to Si–O bonding. Moreover, while ultramarine pig-
ments (natural and synthetic) showed similar ATR-FTIR spectra, differences were observed
in DRIFT modality. These must be considered as markers since they allow the differ-
entiation between the natural and the synthetic variant (marked with black triangles in
Figure 2b,d, respectively). That is, on the one hand, the presence of organic matter (OM)
in UL-N is due to the pigment extraction process; and on the other hand, the presence of
kaolinite in UL-S.
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3.2. Oxide Pigments

Hematite pigments, natural (HE-N) and synthetic (HE-S), owe their red hue to the
presence of iron oxide, i.e., hematite, as detected by XRD. Nevertheless, the natural variety pre-
sented kaolinite, muscovite and dolomite, phases reported as common impurities associated
to the mineral ore [57]. The IR Fe–O strong characteristic bands assigned to iron oxides are lo-
cated in the region below 600 cm−1 in both ATR-FTIR [58–60] and DRIFT modalities [35,61,62];
thus, they are not visible in the spectra presented in this study. Nevertheless, the impurities
in HE-N were identified by characteristic bands assigned to aluminosilicates (kaolinite or
muscovite) and dolomite (CaMg(CO3)2), as shown in Table 3, in both ATR-FTIR (Figure 5a)
and DRIFT spectra (Figure 5b). Lastly, in HE-S, both spectra (Figure 5c,d) analyses did not
provide valuable signals, just bands assigned to Si–O, showing the presence of a small amount
of quartz [35], probably present as an impurity or inert filler.

Table 3. Oxide-based pigments analysed by ATR-FTIR and DRIFT modalities. Bands (cm−1) and
assignment (vibration mode and mineral associated) are included where possible. See Table 1 for the
explanation of the pigment identification codes.

ATR-FTIR DRIFT
Pigment

Wavenumber (cm−1) Assignment 1 Wavenumber (cm−1) Assignment 1

HE-N

~3609 ν(–OH), aluminosilicate [42] 3725 ν(–OH), aluminosilicate [35]
3540–3045 –OH [26], aluminosilicate (?) 3650–3150 –OH [26], aluminosilicate (?)

1800 νs+δ(CO3
2−), dolomite (?) 1867 νs+δ(CO3

2−) [14], dolomite
1636 –OH [26] 1685 –OH [26]

1432, 875, 730 CO3
2−, dolomite [63] 1498, 1445 CO3

2− [26], dolomite (?)
1165 Si–O, quartz [44] 1087, 1043, 745, 710 Si–O, quartz [26]
1021 Si–O, kaolinite [44] 935, 895, 820 Al–OH, kaolinite [35]
915 Al–OH, kaolinite [44]
800 Al,Si–O, kaolinite [43]
700 Al–O [26], kaolinite (?) 670 Si–O, quartz [35]

1690, 1560 –OH [26]
HE-S

1186, 1144, 920 Si–O, quartz [26] 1071, 927, 736, 710 Si–O, quartz [26,35]

RO-N

3700–3000 ν(–OH), aluminosilicate [26],
illite (?) 3800–2900 ν(–OH), aluminosilicate

[35,64], illite (?)
2053 ν+δ(Si–O) [14,35], quartz (?)

1925, 1839 νs+δ(CO3
2−), calcite [26]

1680, 1620 –OH [26], gypsum (?) 1720–1660 –OH [26], gypsum (?)
1269, 1186 C–O [26], calcite (?)

1080, 1023, 793 Si–O, quartz [8,34] 1030–1060 Si–O, silicate [26]
828, 777, 749, 718 Si–O, quartz [35]

700, 670 ν(S–O) [26], gypsum (?)
3650–3100 –OH [26], goethite (?) 3700–3150, 3072, 2960 ν(–OH), goethite [26,65]

1792 C=O, calcite [8,45] 1845 δ(CO3
2−), calcite [26]

1640 –OH [26], goethite (?) 1680 –OH [26], goethite (?)
1395 CO3

2−, calcite [8,45] 1481, 1430, 725 CO3
2−, calcite [35]

1266, 1187 C–O [26], calcite (?)
1090, 1014, 804 Si–O, silicate [26] 1090, 1035, 924 Si–O, silicate [26]

875 νas(CO3
2−), calcite [8,45] 890, 860, 815, 682 δ(CO3

2−), calcite [26]

YO-N

715 νs(CO3
2−), calcite [8,45]

CG-S
3570–3050 –OH [26]

1158, 1104 Si–O, quartz [35] 1170, 1070, 880, 830,
802, 775, 760 Si–O, quartz [35]

1 Vibration mode: νs, symmetric stretching; νas, asymmetric stretching; δ, bending; (?), possible assignment.
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in YO-N [66]. As with what occurred with the hematite pigments, RO-N and YO-N only 
showed IR signals assigned to the impurities (Table 3) since Fe–O characteristic bands 
appear at lower wavenumbers (>600 cm−1), as observed in other pigments, i.e., bands as-
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Figure 5. Absorbance spectra of natural hematite (HE-N) obtained by ATR-FTIR (a) and DRIFT
(b) modalities and synthetic hematite (HE-S) by ATR-FTIR (c) and DRIFT (d) modalities. See Table 1
for the explanation of the pigment identification codes.

As for natural ochre pigments, their colour depends on the nature of the iron oxide
chromophore. As such, the reddish hue in RO-N is mainly due to anhydrous iron oxide
(Fe2O3), whilst in YO-N, the yellow hue is due to hydrated iron oxides such as goethite
(FeO·OH), as identified by XRD analysis. Their natural provenance implied the presence of
impurities, as shown in Table 1: quartz, gypsum, diopside and illite in RO-N, and calcite
in YO-N [66]. As with what occurred with the hematite pigments, RO-N and YO-N only
showed IR signals assigned to the impurities (Table 3) since Fe–O characteristic bands
appear at lower wavenumbers (>600 cm−1), as observed in other pigments, i.e., bands
assigned to quartz or gypsum (in RO-N) or calcite (in YO-N) appeared at higher wavenum-
bers, and generally with higher intensity, in DRIFT modality (Figure 6b,d, respectively).



Appl. Sci. 2025, 15, 3941 14 of 28

Appl. Sci. 2025, 14, x FOR PEER REVIEW 14 of 30 
 

wavenumbers, and generally with higher intensity, in DRIFT modality (Figure 6b,d, re-
spectively).  

 
Figure 6. Absorbance spectra of natural red ochre (RO-N) obtained by ATR-FTIR (a) and DRIFT
(b) modalities and natural yellow ochre (YO-N) by ATR-FTIR (c) and DRIFT (d) modalities. See
Table 1 for the explanation of the pigment identification codes.



Appl. Sci. 2025, 15, 3941 15 of 28

Lastly, regarding synthetic chromium green, the Cr–O tension modes are reported to
be present in the far-IR region (≈605, 577, 497, 474, 460 and 450 cm−1 [67,68]). However, in
DRIFT modality (Figure 7b) we observed high intensity bands at 1170, 1070, 880, 830, 802,
775 and 760 cm−1 ascribable to quartz [35]. This must be assigned to impurities present in
low percentage as it was not identified by XRD (Table 1).
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DRIFT (b) modalities. See Table 1 for the explanation of the pigment identification codes.

Overall, the identification of Fe–O (in HE-N, HE-S, RO-N and YO-N) or Cr–O (in CH-S)
tension modes were not observed in the spectra shown in Figures 5–7, therefore, these
pigments would not be easily identified. Nevertheless, the presence of bands assigned to
impurities (HE-N, RO-N and YO-N) could be used as IR markers to differentiate between
natural and synthetic pigments. Finally, no Reststrahlen bands were identified in these
oxide pigments.

3.3. Carbonate Pigments

All five carbonate-based pigments (AZ-N, AZ-S, MA-N, MA-S and WL-S) presented
characteristic bands assigned to carbonate groups (CO3

2−), though with slight differences
in both ATR-FTIR and DRIFT modalities (Table 4). Similar to what occurred with the
oxide-based pigments, bands related to copper ions (Cu2+) in AZ-N, AZ-S, MA-N, MA-S,
or related to lead ions (Pb2+) in white lead (WL-S) were not identified as they are generally
present below 600 cm−1 [26]. Nevertheless, other characteristic IR bands, ascribable to each
pigment, were observed.
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Table 4. Carbonate-based pigments analysed by ATR-FTIR and DRIFT modalities. Bands (cm−1) and
assignment (vibration mode and mineral associated) are included where possible. See Table 1 for the
explanation of the pigment identification codes.

ATR-FTIR DRIFT
Pigment Wavenumber

(cm−1) Assignment 1 Wavenumber (cm−1) Assignment 1

AZ-N

3955 –OH [26]
3692, 3619 δ(–OH), kaolinite [42] 3810, 3731 –OH, kaolinite [35]

3425 ν(–OH), azurite [52] 3550, 3475 ν(–OH), azurite [14,15]
1498, 1412 νas(CO3

2−), azurite [52] 1914, 1677, 1545 CO3
2−, carbonate [26], azurite (?)

1465 ν(C–O), azurite [69] 1487, 1445 (Reststrahlen), 1421 νas(CO3
2−), azurite [14,15]

1090, 1006 νs(CO3
2−), azurite [52] 1135, 1090 (Reststrahlen), 1007 νs(CO3

2−), azurite [14]
1030, 950 β(–OH), azurite [52] 1040, 935 Al–OH, kaolinite [35]
833, 813 δ(CO3

2−), azurite [52] 834 δ(CO3
2−), azurite [10,14,15]

765, 695 β(CO3
2−), azurite [52] 783, 710 β(CO3

2−), azurite [14]
3957, 3850 –OH [26]

3425 ν(–OH), azurite [52] 3750–2900 ν(–OH), azurite [14,15]
1508, 1396 νas(CO3

2−), azurite [52] 1913, 1885, 1685, 1620, 1530 CO3
2−, carbonate [26], azurite (?)

1469 ν(C–O), azurite [69] 1491, 1450 (Reststrahlen), 1407 νas(CO3
2−), azurite [14,15]

1090 νs(CO3
2−), azurite [52] 1116, 1090 (Reststrahlen), 993 νs(CO3

2−), azurite [14]
950 β(–OH), azurite [52] 954 δ(–OH), azurite [15]

870 CO3
2−, calcite [35]

818 δ(CO3
2−), azurite [52]

AZ-S

767, 739 β(CO3
2−), azurite [52] 792, 765, 685 β(CO3

2−), azurite [14]

MA-N

3395, 3308 δ(–OH), malachite [18] 3700–3000 ν(–OH), malachite [9]
1970 CO3

2− [26], malachite (?)
1852, 1605 CO3

2− [26], malachite (?)
1490, 1379 νas(CO3

2−), malachite [18,52] 1484, 1400 νas(CO3
2−), malachite [9]

1095 νs(CO3
2−), malachite [52] 1128, 1095, 1040, 935 νs(CO3

2−), malachite [9]
1042, 865 β(–OH), malachite [52]

815 δ(CO3
2−), malachite [52] 867 CO3

2− [35], malachite (?)
770 CO3

2−, malachite (?)
776, 745, 705 β(CO3

2−), malachite [52] 680 Si–O, quartz [35]
3403, 3320 δ(–OH), malachite [18] 3700–3000 ν(–OH), malachite [9]

1850, 1594 CO3
2− [26], malachite (?)

1490, 1382 νas(CO3
2−), malachite [18,52] 1478 CO3

2−, malachite (?)
1105 νs(CO3

2−), malachite [52] 1129, 1090 νs(CO3
2−), malachite [9]

1047, 873 β(–OH), malachite [52] 940–910 Si–O, quartz [25]
815 δ(CO3

2−), malachite [52] 845 δ(CO3
2−), malachite (?)

MA-S

750, 712 β(CO3
2−), malachite [52] 769, 695, 675 Si–O, quartz [26]

WL-S

3560–3100 –OH [26], hydrocerussite (?) 3800–3200 ν(–OH), hydrocerussite [14,70]
1730, 1065 νs(CO3

2−), cerussite [14,71] 1780, 1135, 1080, 1020 νs(CO3
2−), cerussite [14,15]

1430, 1370 νas(CO3
2−), cerussite [15] 1550 ν(CO3

2−), carbonate [14,70]
1125 SO4

2−, lead carbonate [72] 1465 νas(CO3
2−), cerussite [13,15]

995 Pb–OH [72], hydrocerussite (?)
850 β(CO3

2−), cerussite [72] 860 β(CO3
2−), cerussite [13,15]

790 β(Pb–OH) [73], hydrocerussite (?)
690 δ(CO3

2−), cerussite [72] 713, 695 δ(CO3
2−), cerussite [72]

1 Vibration mode: νs, symmetric stretching; νas, asymmetric stretching; δ, bending; (?), possible assignment.
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Regarding copper carbonates, azurite is a basic blue copper carbonate (Cu3(CO3)2(OH)2).
The natural version (AZ-N) was additionally composed of quartz, kaolinite and phlogopite
by XRD, all of which are common impurities to which the mineral ore is associated [74]. As
for AZ-S, calcite was also present, related to the raw materials used in its manufacturing
process [74]. When comparing AZ-N and AZ-S (Figure 8), differences between them
were observed. The presence of impurities in the natural pigment, recognizable through
the characteristic bands of kaolinite (–OH and Al–OH bonds [35,42]) and those assigned
to quartz (Si–O bonds [8,34,35]), in both ATR-FTIR and DRIFT spectra, marked a clear
distinction between both pigments. Even though these bands were also present in both
modalities, though present at higher wavenumbers in DRIFT spectra, other IR bands were
observed. Both AZ-N (Figure 8b) and AZ-S (Figure 8d) showed bands assigned to organic
matter (OM) which could be related to a levigation process. This is very remarkable since
DRIFT modality was able to obtain IR signals (of considerable intensity) assigned to organic
matter when ATR-FTIR spectra were unable to provide significant signals.Appl. Sci. 2025, 14, x FOR PEER REVIEW 18 of 30 
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(b) modalities and synthetic azurite (AZ-S) by ATR-FTIR (c) and DRIFT (d) modalities. See Table 1
for the explanation of the pigment identification codes.
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Malachite is also a copper carbonate (Cu2(CO3)(OH)2), similar to azurite, therefore
sharing similar absorption bands regarding hydroxyl (–OH) and carbonate (CO3

2−) groups,
as observed in Table 4. Natural malachite (MA-N) was also composed of hematite and
cuprite, impurities to which the mineral ore is commonly associated [49]. However, none
have IR signals in the 4000–650 cm−1 spectral region. As for synthetic malachite (MA-S),
quartz was also present related to the raw materials used in the pigment manufacture [49].
The ATR-FTIR spectra of both MA-N (Figure 9a) and MA-S (Figure 9c) presented very
similar –OH and CO3

2− group characteristic bands, though at slightly higher wavenumbers
(±5 cm−1) in MA-S. As for the DRIFT spectra, results were very similar between them.
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Regarding white lead (WL-S), this pigment was composed of a carbonate salt, cerus-
site, recognizable through its characteristic CO3

2− groups in both modalities (Table 4).
However, in DRIFT (Figure 10b), they appeared at higher frequencies, and generally with
higher intensities. Additionally, a –OH broad band was present in both modalities, more
pronounced in DRIFT, which could be related to hydrocerussite, commonly present in
white lead [75]. The Pb–O band, characteristic of white lead, was not observed in these
spectra as it is usually present around 466 cm−1 in the ATR-FTIR spectra [73]. Lastly,
organic matter (OM) was also detected, exclusively in DRIFT modality, similarly to azurite
pigments (Figure 7).

Appl. Sci. 2025, 14, x FOR PEER REVIEW 20 of 30 
 

Figure 9. Absorbance spectra of natural malachite (MA-N) obtained by ATR-FTIR (a) and DRIFT 
(b) modalities and synthetic malachite (MA-S) by ATR-FTIR (c) and DRIFT (d) modalities. See Table 
1 for the explanation of the pigment identification codes. 

Regarding white lead (WL-S), this pigment was composed of a carbonate salt, cerus-
site, recognizable through its characteristic CO32− groups in both modalities (Table 4). 
However, in DRIFT (Figure 10b), they appeared at higher frequencies, and generally with 
higher intensities. Additionally, a –OH broad band was present in both modalities, more 
pronounced in DRIFT, which could be related to hydrocerussite, commonly present in 
white lead [75]. The Pb–O band, characteristic of white lead, was not observed in these 
spectra as it is usually present around 466 cm−1 in the ATR-FTIR spectra [73]. Lastly, or-
ganic matter (OM) was also detected, exclusively in DRIFT modality, similarly to azurite 
pigments (Figure 7). 

 
Figure 10. Absorbance spectra of synthetic white lead (WL-S) obtained by ATR-FTIR (a) and DRIFT 
(b) modalities. See Table 1 for the explanation of the pigment identification codes. 

In short, copper-carbonate pigments were distinguishable regardless of the modality 
used. In azurite pigments, –OH bands were present as a single peak (around 3425 cm−1, as 
observed in Figure 8a,c, respectively), whilst in malachite pigments they were present as 
doublets at ~3400 and ~3310 cm−1 (Figure 9a,c, respectively). Moreover, Reststrahlen bands 
were identified exclusively in azurite pigments in DRIFT modality, regardless of their na-
ture (natural or synthetic), marked with a black arrow in Figure 8b,d. These must also be 
considered as markers to differentiate between azurite and malachite pigments, as Miliani 
et al. also reported [14]. Finally, the presence of organic matter was observed in all the 
carbonate pigments when using DRIFT modality, something that is undoubtedly of great 
interest to professionals in the conservation science field. 

  

Figure 10. Absorbance spectra of synthetic white lead (WL-S) obtained by ATR-FTIR (a) and DRIFT
(b) modalities. See Table 1 for the explanation of the pigment identification codes.

In short, copper-carbonate pigments were distinguishable regardless of the modality
used. In azurite pigments, –OH bands were present as a single peak (around 3425 cm−1,
as observed in Figure 8a,c, respectively), whilst in malachite pigments they were present
as doublets at ~3400 and ~3310 cm−1 (Figure 9a,c, respectively). Moreover, Reststrahlen
bands were identified exclusively in azurite pigments in DRIFT modality, regardless of
their nature (natural or synthetic), marked with a black arrow in Figure 8b,d. These must
also be considered as markers to differentiate between azurite and malachite pigments, as
Miliani et al. also reported [14]. Finally, the presence of organic matter was observed in
all the carbonate pigments when using DRIFT modality, something that is undoubtedly of
great interest to professionals in the conservation science field.

3.4. Sulphide Pigments

It is widely reported in the literature that the characterization of sulphide-based
pigments, e.g., cinnabar, vermilion or orpiment, cannot be achieved by FTIR analysis [76].
For instance, mercury sulphide pigments, i.e., cinnabar and vermilion, show Hg–S tension
bands in the far-IR spectral region (345 and 283 cm−1 on both pigments [77]). Nevertheless,
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Figure 11 showed that ATR-FTIR and DRIFT spectra of both CI-N and VE-S had IR signals.
On the one hand, this is related to SO2 stretching (marked with black arrows in Figure 11),
characteristic of sulphide pigments, and which showed better resolution in the synthetic
pigment (VE-S). On the other hand, even though CI-N and VE-S were only composed of
cinnabar (HgS) by XRD analysis, the presence of IR bands assigned to impurities such as
calcite and quartz were detected by FTIR analysis (see Table 5). Calcite and quartz are
among the characteristic impurities found to be associated with the natural ore, as well
as used to synthesize the synthetic version [78]. Also, the DRIFT spectra showed higher
resolution and more information when compared to the ATR-FTIR spectra, regardless of
the pigment (CI-N or VE-S, Figure 11b,d, respectively). Interestingly, VE-S showed –OH
broad bands in both ATR-FTIR and DRIFT, though the authors could not ascribe it to a
mineral phase. Lastly, organic matter (OM) was present in both pigments which should be
related to a levigation process, as with what was observed in carbonate pigments.

Table 5. Sulphide-based pigments analysed by ATR-FTIR and DRIFT modalities. Bands (cm−1) and
assignment (vibration mode and mineral associated) are included where possible. See Table 1 for the
explanation of the pigment identification codes.

ATR-FTIR DRIFT
Pigment

Wavenumber (cm−1) Assignment 1 Wavenumber (cm−1) Assignment 1

CI-N

1686, 1556, 1490, 1434 CO3
2−, carbonate [26],

calcite (?)
1248 νas(SO2) [26], cinnabar (?) 1259 νas(SO2) [26], cinnabar (?)

1135, 1033 ν(Si–O), quartz [8,34] 1075, 918, 897, 807, 700 ν(Si–O), quartz [35]
875 νas(CO3

2−), calcite [8,45]
743, 665 ν(Si–O), quartz [8,34] 667 Si–O, quartz [35]

3500–3000 –OH [26] 3846, 3700–3200 –OH [26]

~1647, ~1450 CO3
2−, carbonate [26],

calcite (?) 1698, 1591, 1495, 1434 CO3
2−, carbonate [26],

calcite (?)
1258 νas(SO2) [26], vermilion (?)

1206 νas(SO2) [26], vermilion (?)
1157, 1080, 1026, 661 ν(Si–O), quartz [8,34] 1099, 925, 803, 694, 677 ν(Si–O), quartz [35]

VE-S

875 νas(CO3
2−), calcite [8,45]

OR-N

~1420 CO3
2−, carbonate [26],

calcite (?) 1690, 1491 CO3
2−, carbonate [26],

calcite (?)

1244 νas(SO2) [26],
orpiment/realgar (?) 1285, 1260 νas(SO2) [26],

orpiment/realgar (?)

1145, 1035, 845, 798, 710 ν(Si–O), quartz [8,34] 1180, 1140, 1070, 893, 860,
815, 700, 675, 660 ν(Si–O), quartz [35]

870 νas(CO3
2−), calcite [8,45]

1 Vibration mode: νs, symmetric stretching; νas, asymmetric stretching; δ, bending; (?), possible assignment.

Regarding orpiment (OR-N), a very similar situation to that mentioned in CI-N and VE-
S was observed. The raw pigment was composed of orpiment and realgar (by XRD), both
arsenic sulphides. However, even though As–S characteristic bands were not identified as
they are generally present around 480 cm−1 [26], the presence of SO2 stretching vibration
was present (marked with black arrows in Figure 12). In Figure 12 it can be seen that the
ATR-FTIR spectra showed higher noise than DRIFT spectra. Also, DRIFT showed higher
number of bands, all of which could be related to calcite or quartz (see Table 5), likely to be
present as impurities (even though they were not identified by XRD, Table 1). Moreover,
organic matter (OM) was again present, though more pronounced in DRIFT modality.



Appl. Sci. 2025, 15, 3941 21 of 28Appl. Sci. 2025, 14, x FOR PEER REVIEW 22 of 30 
 

 
Figure 11. Absorbance spectra of natural cinnabar (CI-N) obtained by ATR-FTIR (a) and DRIFT (b) 
modalities and synthetic cinnabar (CI-S) by ATR-FTIR (c) and DRIFT (d) modalities. See Table 1 for 
the explanation of the pigment identification codes. 

Regarding orpiment (OR-N), a very similar situation to that mentioned in CI-N and 
VE-S was observed. The raw pigment was composed of orpiment and realgar (by XRD), 
both arsenic sulphides. However, even though As–S characteristic bands were not identi-
fied as they are generally present around 480 cm−1 [26], the presence of SO2 stretching vi-
bration was present (marked with black arrows in Figure 12). In Figure 12 it can be seen 
that the ATR-FTIR spectra showed higher noise than DRIFT spectra. Also, DRIFT showed 
higher number of bands, all of which could be related to calcite or quartz (see Table 5), 

Figure 11. Absorbance spectra of natural cinnabar (CI-N) obtained by ATR-FTIR (a) and DRIFT
(b) modalities and synthetic cinnabar (CI-S) by ATR-FTIR (c) and DRIFT (d) modalities. See Table 1
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Overall, it was observed that the identification of sulphide pigments is not an easy task
by IR spectroscopy, regardless of the modality. Though their impurities appeared in the
spectra, the three pigments showed the same mineral phases (calcite and quartz). Therefore,
the use of other portable techniques such as Raman spectroscopy should be considered
for their identification. Nevertheless, it was observed that DRIFT modality provided more
information than ATR-FTIR. Also, all three showed bands assigned to organic matter (OM)
which could be related to a levigation process, where rabbit glue was used for CI-N and
VE-S, and casein in OR-N, as explained in [27].

3.5. Acetate Pigment

Neutral copper acetate, i.e., verdigris, corresponds chemically and structurally with the
mineral hoganite (Cu(CH3COO)2·H2O) [79], as detected by XRD. Based on the literature,
the main ATR-FTIR characteristic bands that can be associated to this pigment were detected
(Table 6, Figure 13a). However, the study of the VER-S by DRIFT modality showed
differences, specially related to hydroxyl groups (–OH bonds) of the acetate ion. Whilst in
ATR-FTIR we observed three characteristic bands at 3447, 3362 and 3268 cm−1, the DRIFT
spectrum showed a broad band between 3700 and 3200 cm−1 likely due to the interaction
with atmospheric moisture (Figure 13b). The acetate group was also detected by DRIFT
modality, though at higher wavenumbers and with lower intensity (marked with a black
rectangle in Figure 13).
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Table 6. Acetate-based pigment analysed by ATR-FTIR and DRIFT modalities. Bands (cm−1) and
assignment (vibration mode and mineral associated) are included when possible. See Table 1 for the
explanation of the pigment identification codes.

ATR-FTIR DRIFT
Pigment

Wavenumber (cm−1) Assignment 1 Wavenumber (cm−1) Assignment 1

VER-S

3447, 3362, 3268 ν(–OH), acetate ion [80–82] 3800–3200 ν(–OH) [26], acetate ion (?)
2990, 2942 ν(C–H), acetate [83] 3080, 3027 ν(C–H) [26], acetate (?)

2863 νs(CH3) [26], acetate (?)
2778–1935 Not assigned

1652 C=O [26]
1595 νs(COO−), acetate [80–82] 1710, 1690 νs(COO−) [26], acetate (?)

1441, 1417 νas(COO−), acetate [80–82] 1577,1508 νas(COO−) [26], acetate (?)
1468 (COO−) [26], acetate (?)

1260 νs(C=O) [80–82] 1289 νs(C=O) [26]
1155 -CH3 [80–82] 1171 -CH3 (?)

1355, 1056, 1036 C–H from the CH3 in the
acetate group [80–82] 1392, 1060 C–H from the CH3 in the

acetate group (?)

690 δ(O–C–O), acetate ion
[80–83] 725, 662 O–C–O [26]

1 Vibration mode: νs, symmetric stretching; νas, asymmetric stretching; δ, bending; (?), possible assignment.
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4. Conclusions
This study presents the results obtained from the analysis of nineteen pigments by

infrared spectroscopy comparing Fourier Transform Infrared-Spectroscopy in Attenuated
Total Reflection (ATR-FTIR) and Diffuse Reflectance (DRIFT) modalities. Prior character-
ization using X-ray diffraction (XRD) played a crucial role in identifying characteristic
bands assigned to impurities and/or additives, highlighting discrepancies between the
actual composition of the pigments and the information provided by manufacturer. Fur-
thermore, additional mineral phases were detected through their infrared characteristic
bands in both ATR-FTIR and DRIFT modalities, which were not identified by XRD—likely
due to their low concentration—falling below the detection threshold (ca. 3 wt.%) of the
XRD equipment.

With regards to FTIR modalities, the DRIFT modality proved to be highly effective at
differentiating pigments with similar chemical natures such as silicates, oxides, carbonates,
sulphides and acetates. Also, DRIFT enabled the distinction between natural and synthetic
analogues by detecting impurities in natural pigments, as well as manufacturing-related
compounds or additives, mainly quartz and calcite, in synthetic ones. These features
generally appeared at higher wavenumbers and with higher intensity compared to the
spectra obtained by ATR-FTIR modality.

DRIFT modality offers notable advantages, particularly its enhanced sensitivity in
detecting organic compounds. Its non-destructive nature allowed for the identification of
spectral bands associated with organic substances, which may be linked to the levigation
process. These organic-related bands were observed in all analysed pigments except for
Egyptian blue, synthetic blue ultramarine, chrysocolla, synthetic hematite and verdigris.
However, DRIFT also presents certain limitations, including the presence of spectral in-
terferences from atmospheric moisture (broad bands between 4000 and 3100 cm−1) and
carbon dioxide (doublet band between 2400 and 2300 cm−1). These external contributions
can complicate spectral interpretation and affect analytical precision.

In all, this study sets the foundation for addressing the uncertainty related to the
interpretation of the spectra obtained by DRIFT modality. The results presented are con-
sidered a starting point for the identification of pigments in pictorial artworks (whatever
their nature—mural or easel—or the painting technique) for in situ characterization, with-
out the need for sampling, thus respecting the integrity of the original work. However,
given the complexity of heritage materials, it is common practice in heritage science to
integrate multiple analytical techniques. Therefore, combining DRIFT spectroscopy with
complementary methods such as Raman spectroscopy enhances the depth and accuracy of
pigment characterization, providing more comprehensive information.

Finally, future studies involving the analysis of real pictorial works should consider
the results obtained here in order to provide veracity and establish differences that will
help the scientific community.
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